四十年,我们只做了一件事 —— 光运用!

全国咨询服务热线:

0519-85515985
技术咨询

光解作用原理

发表时间:2019-01-08 14:59:17 | 浏览:180次

       光化作用的一种,物质由于光的作用而分解的过程。光解作用是有机污染物真正的分解过程,因为它不可逆地改变了反应分子,强烈地影响水环境中某些污染物的归趋。一个有毒化合物的光化学分解的产物可能还是有毒的。

   类  别:光化作用

      属  于: 有机污染物真正的分解过程

      特  点:不可逆地改变了反应分子

      一、简  介:

  光解过程可分为三类:第一类称为直接光解,这是化合物本身直接吸收了太阳能而进行分解反应;第二类称为敏化光解,水体中存在的天然物质(腐殖质等)被阳光激发,又将其激发态的能量转移给化合物而导致的分解反应;第三类是氧化反应,天然物质被辐照而产生自由基或纯态氧(又称单一氧)等中间体,这些中间体又与化合物作用而生成转化的产物。

      二、光解分类

       1、直接光解

   根据Grothus—Draper定律,只有吸收辐射(以光子的形式)的那些分子才会进行光化学转化。这意味着光化学反应的先决条件应该是污染物的吸收光谱要与太阳发射光谱在水环境中可利用的部分相适应。

       (1)水环境中光的吸收作用:光以具有能量的光子与物质作用,物质分子能够吸收作为光子的光,如果光子的相应能量变化允许分子间隔能量级之间的迁移,则光的吸收是可能的。因此,光子被吸收的可能性强烈地随着光的波长而变化。一般说来,在紫外—可见光范围的波长的辐射作用,可以有有效的能量给最初的光化学反应。下面首先讨论外来光强是如何到达水体表面的。

       水环境中污染物光吸收作用仅来自太阳辐射可利用的能量,太阳发射几乎恒定强度的辐射和光谱分布,但是在地球表面上的气体和颗粒物通过散射和吸收作用,改变了太阳的辐射强度。阳光与大气相互作用改变了太阳辐射的谱线分布。

  太阳辐射到水体表面的光强随波长而变化,特别是近紫外(290—320nm)区光强变化很大,而这部分紫外光往往使许多有机物发生光解作用。其次,光强随太阳射角高度的降低而降低。此外,由于太阳光通过大气时,有一部分被散射,因而使地面接受的光线除一部分是直射光(Id)外,还有一部分是从天空来的散射光(I­s),在近紫外区,散射光要占到50%以上。

  当太阳光束射到水体表面,有一部分以与入射角z相等的角度反射回大气,从而减少光在水柱中的可利用性,一般情况下,这部分光的比例小于10%,另一部分光由于被水体中颗粒物、可溶性物质和水本身散射,因而进入水体后发生折射从而改变方向。

  (2)光量子产率:虽然所有光化学反应都能吸收光子,但是并不是每一个被吸收的光子均诱发产生化学反应,还可能产生辐射跃迁等光物理过程。因此光解速率只正比于单位时间所吸收的光子数,而不是正于所吸收的总能量。

       环境条件也影响光解量子产率。分子氧在一些光化学反应中的作用象是淬灭剂,减少光量子产率,在另外一些情况下,它不影响甚至可能参加反应,因此任何情况下,进行光解速率常数和光量子产率的测量时需要说明水体中分子氧的浓度。

  悬浮物也影响光解速率,它不仅可以增加光的衰减作用,而且还改变吸附在他们上面的化合物的活性。化学吸附作用也能影响光解速率,一种有机酸或碱的不同存在形式可能有不同的光量子产率以及出现化合物光解速率随pH变化等。

       2、敏化光解(间接光解)

       除了直接光解外,光还可以用其他方法使水中有机污染物降解。一个光吸收分子可能将它的过剩能量转移到一个接受体分子,导致接受体反应,这种反应就是光敏化作用。2,5二甲基呋喃就是可被光敏化作用降解的一个化合物,在蒸馏水中将其暴露于阳光中没有反应,但是它在含有天然腐殖质的水中降解很快,这是由于腐殖质可以强烈地吸收波长小于500nm的光,并将部分能量转移给它,从而导致它的降解反应。

      3、氧化反应

有机毒物在水环境中所常遇见的氧化剂有单重态氧(1O2),烷基过氧自由基(RO2),烷氧自由基(RO)或羟自由基(OH)。这些自由基虽然是光化学的产物,但它们是与基态的有机物起作用的,所以把它们放在光化学反应以外,单独作为氧化反应这一类。

       三、光解作用

       大气中最常见的光解作用有两种,第一种是:O3 + hν → O2 + O1D λ < 320 nm

       臭氧被光分解成了氧分子和一个处于激发态的氧原子 O1D。这一氧原子会和空气中的水分子作用而生成氢氧根:O1D + H2O → 2OH ,这些氢氧根会氧化碳氢化合物,因而有如同清洁剂的效果

       第二种是:NO2 + hν → NO + O ,这是对流层中的臭氧形成的主要化学作用。

       详解光合作用中水的光解

       水裂解放氧是水在光照下经过PSⅡ的作用,释放氧气,产生电子,释放质子到类囊体腔内,整个反应如下:2H2O→O2+4H++4e-

       放氧复合体(OEC)位于PSⅡ的类囊体膜腔表面,由多肽(包括33 kDa、23 kDa和18kDa)及与放氧有关的锰复合物、氯和钙离子组成。当P680吸光激发为P680*后,把电子传到去镁叶绿素(pheophytinpheo)。pheo就是原初电子受体,而Tуr(酪氨酸残基)是原初电子供体,这就与放氧复合体联系,进入状态(S)。

       闪光诱导动力学研究发现,氧气的释放伴随着4个闪光周期性的摆动。在黑暗中已适应的叶绿体经过,第一、二次闪光处理,无O2产生;第三次闪光,放O2最多;第四次闪光,放O-2量次之,以后就逐渐下降到恒定值。为了解释这个现象,Kok等(1970)提出5个S状态循环的模式说明OEC需要4个氧化当量(失去4个e,积累4个正电荷)才能把水分子完全裂解并放氧。SO、S1、S2、S3、S4表示放氧复合体的不同氧化还原状态的OEC,每闪光一次则有不同的状态。第1次闪光促进S1转为S2,第2次闪光氧化S2S3,第3次闪光就产生强氧化剂S4S4不稳定,把水裂解并放氧(所以第3次闪光,放O2最多),同时S4回转为S0,如此循环。以后每1个循环吸收4个光量子,氧化2个水分子,向PSⅡ反应中心传递4个电子并释放4个质子和1个氧分子,这种循环也称为水氧化钟(water oxidizing clock)。

       人们很早就知道水的裂解必须有锰参与。锰直接作用于水裂解积累4个氧化当量过程。实验推测,每个放氧复合体结合4个锰离子,其中一部分可在积累氧化当量中起直接作用,其余仅作为结构因子。此外,氯和钙离子可能在S3→S4→SO步骤中起作用,影响放氧。